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Abstract

Polycrystalline samples of Ho,_, Tb,Ti,O; (x = 0.5, 1, and 1.5) have been prepared and characterized. No long-range order is
observed for HoTbTi,O; in magnetization and specific heat measurements down to 2K. The low-energy magnetic excitation
measurements suggests that HoTbTi,O; possesses both characteristics of spin ice and spin liquid in the ground state.

© 2006 Elsevier B.V. All rights reserved.

PACS: 75.50.—y; 75.50.Ee; 75.50.Gg

Keywords: Frustrated magnetic system; Neutron scattering; Pyrochlore; Spin ice; Spin liquid; Specific heat; Magnetic susceptibility

Pyrochlore oxides with a general formula A,B,O; (A:
rare earth, B: transition metal) have attracted much
attention due to the geometrical frustrations and interest-
ing low temperature properties. Ho,Ti,O; had been
reported to have a spin-ice configuration with a net
ferromagnetic interaction explained by an ising-type
anisotropy model [1]. Tb,Ti,O5 shows a fluctuating spin-
liquid state at low temperatures as explained by an
antiferromagnetic Heisenberg model [2]. In this report,
we describe the physical properties of the mixed com-
pound, HoTbTi,05, together with its structural data.

Polycrystalline samples Ho,_,Tb, Ti,O; (x =0.5, 1.0,
and 1.5) were synthesized using a standard solid-state
reaction [3]. Room temperature X-ray powder diffraction
data showed no secondary impurity phases within our
instrumental resolution of 0.03°. Lattice parameters are
a=10.134, 10.117, and 10.103 A for x = 0.5, 1.0, and 1.5,
respectively with space group Fd3m.
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Magnetic susceptibility y(7) are shown in Fig. 1 for
x=20.5, 1.0, and 1.5. No magnetic transition is observed
down to 2 K; however, small change is observed below 5 K
for all samples. The Curie—Weiss law, y = C/(T-0cw), was
fitted to the data, where C is the Curie constant and Ocw
the Curie-Weiss temperature. The effective moments pqgr
were determined for the temperature range from 200 to
400 K.

It is found that Ocw = —14.2, —11.7, and —10.3 K, and
Perr = 9.93, 10.08, and 10.29 ug, for x = 0.5, 1.0, and 1.5,
respectively. p.r increase as x increase. These observations
suggest that antiferromagnetic state is preferred to
ferromagnetic state in these compounds.

Specific heat measurements were carried out using a
thermal relaxation method down to 0.5K. No magnetic
transition is observed. These results are consistent with
those from neutron powder diffraction measurements [3].
Specific heat C,, for x =1 is shown in Fig. 2.

Lattice specific heat C; is estimated from the nonmag-
netic iso-structural compound Y,Ti,O;. Magnetic specific
heat C,, is estimated below 30K by subtracting C;. No
anomaly is observed. Although no nuclear contribution is
considered here [4], a broad peak, which is possibly from
spin ice state, can be seen around 1.9 K. The broad peak
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Fig. 1. Temperature dependence of inverse magnetic susceptibility 1/y for
Ho,_ . Tb,Ti,O; with x = 0.5, 1.0, and 1.5.
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Fig. 2. Specific heat C, for HoTbTi,O; as a function of temperature.
Lattice specific heat C; is estimated from Y,Ti,O;. Magnetic specific heat
Cp, is calculated from C, by subtracting C;.

around 6 K in the spin-liquid state for x = 0 [2] is shifted to
15K. This observation is consistent with the results from
%(T), where the y(7T) deviates from the Curie—Weiss law
below ~30 K. The peak at 1.5K for x = 0 may merge into
the peak at 1.9 K. Detailed analysis of magnetic specific
heat and magnetic entropy will be discussed elsewhere [3].
From the discussion above, it can be concluded that
HoTbTi,O; shows the characteristics of both spin ice and
spin liquid below 30 K.

In addition, the low-energy excitations of HoTbTi,O,
powder samples were investigated at the time-of-flight
(TOF) spectrometer diffuse neutron scattering (DNS) at
FRJ-2, Germany. The wavelength of 4.75 A was chosen to
achieve a good energy resolution. The inelastic neutron
scattering data at 10 K are shown in Fig. 3. The first excited
mode is observed at ~2meV, which is reminiscent of the
crystal-field level previously reported for Tb,Ti,O; [2].
Above 100 K, this mode disappears, however, a new mode
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Fig. 3. Time-of-flight neutron scattering performed at DNS for HoTb-
Ti,O; at 10K with a wavelength of 4.75A.

is observed at ~1.3mV (not shown). This may resemble the
intrinsic transitions of Ho,Ti,O7 [5].

For summary, we prepared the polycrystalline pyro-
chlore samples of Ho,_,Tb,Ti,O; and studied magnetic
and structural propertiecs. No long-range order was
observed in magnetic susceptibility, specific heat and the
DNS measurements down to the lowest temperature.
Specific heat and the DNS measurements, however, suggest
a possible ground state of HoTbTi,O,, which shows both
characteristics of spin-ice state (Ho,Ti,07) and spin-liquid
state (Tb,Ti,07).

L.J.C. sincerely thanks J. PerBon for sample prepara-
tions and Y. Su for useful discussions.
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