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Abstract

Polycrystalline samples of Ho2�xTbxTi2O7 (x ¼ 0.5, 1, and 1.5) have been prepared and characterized. No long-range order is

observed for HoTbTi2O7 in magnetization and specific heat measurements down to 2K. The low-energy magnetic excitation

measurements suggests that HoTbTi2O7 possesses both characteristics of spin ice and spin liquid in the ground state.

r 2006 Elsevier B.V. All rights reserved.
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Pyrochlore oxides with a general formula A2B2O7 (A:
rare earth, B: transition metal) have attracted much
attention due to the geometrical frustrations and interest-
ing low temperature properties. Ho2Ti2O7 had been
reported to have a spin-ice configuration with a net
ferromagnetic interaction explained by an ising-type
anisotropy model [1]. Tb2Ti2O7 shows a fluctuating spin-
liquid state at low temperatures as explained by an
antiferromagnetic Heisenberg model [2]. In this report,
we describe the physical properties of the mixed com-
pound, HoTbTi2O7, together with its structural data.

Polycrystalline samples Ho2�xTbxTi2O7 (x ¼ 0.5, 1.0,
and 1.5) were synthesized using a standard solid-state
reaction [3]. Room temperature X-ray powder diffraction
data showed no secondary impurity phases within our
instrumental resolution of 0.031. Lattice parameters are
a ¼ 10.134, 10.117, and 10.103 Å for x ¼ 0.5, 1.0, and 1.5,
respectively with space group Fd3m.
- see front matter r 2006 Elsevier B.V. All rights reserved.
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Magnetic susceptibility w(T) are shown in Fig. 1 for
x ¼ 0.5, 1.0, and 1.5. No magnetic transition is observed
down to 2K; however, small change is observed below 5K
for all samples. The Curie–Weiss law, w ¼ C/(T–yCW), was
fitted to the data, where C is the Curie constant and yCW
the Curie–Weiss temperature. The effective moments peff
were determined for the temperature range from 200 to
400K.
It is found that yCW ¼ �14.2, �11.7, and �10.3K, and

peff ¼ 9.93, 10.08, and 10.29 mB, for x ¼ 0.5, 1.0, and 1.5,
respectively. peff increase as x increase. These observations
suggest that antiferromagnetic state is preferred to
ferromagnetic state in these compounds.
Specific heat measurements were carried out using a

thermal relaxation method down to 0.5K. No magnetic
transition is observed. These results are consistent with
those from neutron powder diffraction measurements [3].
Specific heat Cp for x ¼ 1 is shown in Fig. 2.
Lattice specific heat Cl is estimated from the nonmag-

netic iso-structural compound Y2Ti2O7. Magnetic specific
heat Cm is estimated below 30K by subtracting Cl. No
anomaly is observed. Although no nuclear contribution is
considered here [4], a broad peak, which is possibly from
spin ice state, can be seen around 1.9K. The broad peak
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Fig. 2. Specific heat Cp for HoTbTi2O7 as a function of temperature.

Lattice specific heat Cl is estimated from Y2Ti2O7. Magnetic specific heat

Cm is calculated from Cp by subtracting Cl.
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Fig. 1. Temperature dependence of inverse magnetic susceptibility 1/w for

Ho2�xTbxTi2O7 with x ¼ 0.5, 1.0, and 1.5.

Fig. 3. Time-of-flight neutron scattering performed at DNS for HoTb-

Ti2O7 at 10K with a wavelength of 4.75 Å.
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around 6K in the spin-liquid state for x ¼ 0 [2] is shifted to
15K. This observation is consistent with the results from
w(T), where the w(T) deviates from the Curie–Weiss law
below �30K. The peak at 1.5K for x ¼ 0 may merge into
the peak at 1.9K. Detailed analysis of magnetic specific
heat and magnetic entropy will be discussed elsewhere [3].
From the discussion above, it can be concluded that
HoTbTi2O7 shows the characteristics of both spin ice and
spin liquid below 30K.

In addition, the low-energy excitations of HoTbTi2O7

powder samples were investigated at the time-of-flight
(TOF) spectrometer diffuse neutron scattering (DNS) at
FRJ-2, Germany. The wavelength of 4.75 Å was chosen to
achieve a good energy resolution. The inelastic neutron
scattering data at 10K are shown in Fig. 3. The first excited
mode is observed at �2meV, which is reminiscent of the
crystal-field level previously reported for Tb2Ti2O7 [2].
Above 100K, this mode disappears, however, a new mode
is observed at �1.3mV (not shown). This may resemble the
intrinsic transitions of Ho2Ti2O7 [5].
For summary, we prepared the polycrystalline pyro-

chlore samples of Ho2�xTbxTi2O7 and studied magnetic
and structural properties. No long-range order was
observed in magnetic susceptibility, specific heat and the
DNS measurements down to the lowest temperature.
Specific heat and the DNS measurements, however, suggest
a possible ground state of HoTbTi2O7, which shows both
characteristics of spin-ice state (Ho2Ti2O7) and spin-liquid
state (Tb2Ti2O7).

L.J.C. sincerely thanks J. PerXon for sample prepara-
tions and Y. Su for useful discussions.
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